IDENTIFICATION AND ASSESSMENT OF THE RISKS INVOLVED IN OPERATIONS AND MAINTENANCE ACTIVITIES ON HIGHWAYS

Sayanti Mukhopadhyay
Major Professors: Jennifer S. Shane, Ph.D. and Kelly Strong, Ph.D.
Iowa State University

PURPOSE OF THE STUDY

There were over 55,000 crashes between 2001 and 2010 in Iowa involving intermittent work zones or work on the shoulders and medians, Figure 1. The purpose of this study is to identify and assess the risks involved in mobile operations and maintenance activities on highways using an Integrated Risk Management Model that looks at frequency and severity of accidents.

RESEARCH METHODOLOGY

1. Conducted Technical Advisory Committee (TAC) Meeting to identify the probable hazards
2. Analyzed the Iowa DOT Statewide Crash Data from 2001 to 2010 provided by the Office of Traffic and Safety, Iowa DOT
3. Sent out surveys for validation of results to Traffic & Safety and ‘Operations & Maintenance’ divisions of Iowa DOT

Severity of the Hazards

- Dependent variable – “Severity of crashes”
- The dependent variable being discrete and ordered, the suitable model selected was ORDERED PROBIT MODEL [Assumption: Disturbance terms (ε)~N (0, 1)]
- The statistical significance of the independent variables were estimated using one-tailed t-test and 90% confidence (α=0.10)
- The critical cut-off value for the t-statistic was 1.28 (n >100)

Frequency of the Hazards

- Frequency / likelihood of occurrence of the hazards is same as the frequency of crashes caused due to those hazards.
- Descriptive Statistics (DS) were used to analyze the frequency / likelihood of occurrence of the hazards.

ANALYSIS OF DATA

SEVERITY
- A variety of models were tested with the different variables and the best one was chosen according the highest adjusted ρ² value, significant χ² value and containing meaningful variables.
- The distribution of the weighted marginal effects from the Ordered Probit Model was used to rank the hazards according to their severity.

FREQUENCY
- Percentage frequency distribution of the hazards was used to rank the factors according to their frequency.

INTEGRATED RISK MANAGEMENT MODEL

- The severity and the likelihood of occurrence of the hazards were ranked on a Likert scale of 1 through 5, 1 being the least and 5 being the most.
- The severity and frequency values were multiplied to create a risk index value which is measured with the Integrated Risk Management Model (values ranging from 1 through 25), Figure 2.

IMPLICATIONS OF THE RESULTS

- The results indicate that improper traffic control systems near the work zones and high speed limits on highways are the major reasons behind mobile work zone related crashes.
- These factors can be mitigated by:
 - decreasing the speed limits at reasonable distances away from the mobile work zone,
 - imposing high speed limit fines near the work zones, and
 - by improving the mobile work zone signage systems

REFERENCES