The overall goal of this work is to develop catalytic systems that can be used in the synthesis of \(\alpha,\omega \)-difunctionalized monomers. Specific objectives include the synthesis and testing of three NHCs in a metal-based system. An alternative synthesis pathway was also used to develop a NHC-based palladium catalyst. Our goal is a NHC-based palladium catalyst. As shown in figure 3, imidazole synthesis uses primary amines, glyoxal and formaldehyde in refluxing methanol. The resulting imidazole \(\text{4} \) was purified by basifying to pH 9, washing with ether, removal of solvent and recrystallization with toluene. The tethered imidazole rings \(\text{5} \) were formed via \(\text{S}_\text{2} \) chemistry by refluxing \(\text{4} \) in \(\text{CH}_\text{3} \text{Br}_\text{2} \) (figure 4). An alternative synthesis pathway was also used — with limited success — by reacting \(\text{4} \) with \(\text{CH}_\text{2} \text{Br}_\text{2} \) in the presence of toluene. The product is purified via filtration of the precipitate and washing with toluene. Pd complexes are formed by refluxing \(\text{5} \) with Pd(OAc)\(_\text{2} \) in DMSO. Removal of the DMSO and washing the crude residue with water results in a light yellow powder. All structures were verified using H\(^1\) NMR.

During our summer research experience, we successfully synthesized three imidazole-based palladium catalysts using the processes explained above. Each was characterized and its identity verified using a combination of H\(^1\)-NMR and gas chromatography. The resulting Pd catalysts were tested, however preliminary results show little to no activity. This catalytic synthesis pathway will continue to be developed.

References

Acknowledgements

We would like to thank Iowa State University, the National Science Foundation and CBiRC for the opportunity to participate in this RET. In addition, we would like to extend a special “thank you” to Gina Roberts, Dr. Keith Woo and his lab group, Dr. Adah Leshem-Ackerman and the CBiRC staff.