Thermo-Mechanical Properties of Tung-Oil Based Thermosetting Polymers

Joshua Heyer¹, Peter Hondred², Michael Kessler²

Johnston Community High School, Johnston, IA¹
Department of Materials Science Engineering, Iowa State University²

MOTIVATION

THE DEBATE: Petroleum Based vs Agricultural Based Products

- **COST**
- **SUSTAINABILITY**
- **ENVIRONMENTAL**
- **ENERGY**

Research to reduce societies dependency on petroleum products has increased and alternatives to petroleum and petroleum based products are becoming more relevant. Polymers made from bio-renewable resources are rapidly gaining attention as well.

SELF HEALING POLYMERS

- In plastics, microcracks often lead to large-scale material damage.

Self-healing polymer can effectively “heal” itself without any manual intervention in order to arrest macrocrack growth, or even stop macrocrack formation by “healing” microcracks

OBJECTIVE

- Investigate the thermo-mechanical characteristics of tung oil thermosetting polymers.
- Enhance crack flowing ability of healing agent
- Determine the pros and cons of replacing tung oil triglycerides with tung oil methyl ester on: 1. Storage modulus 2. Cross-link density

POLYMER SAMPLE

- The study of the flow of matter
- Used to measure viscosity

RHEOLOGY

POLYMERIZATION PROCESS

SOXHLET EXTRACTION

ACKNOWLEDGEMENTS

I would like to thank the Center for Biorenewable Chemicals (CBiRC) for creating the Research Experience for Teachers (RET) and providing me an opportunity to expand my knowledge in engineering and biorenewables. I would also like to thank Dr. Michael Kessler’s polymer composite research group for letting me experience engineering first hand by working in their labs. Special thanks to Peter Hondred for his guidance and sharing his knowledge during the RET experience.

ACKNOWLEDGEMENTS

I would like to thank the Center for Biorenewable Chemicals (CBiRC) for creating the Research Experience for Teachers (RET) and providing me an opportunity to expand my knowledge in engineering and biorenewables. I would also like to thank Dr. Michael Kessler’s polymer composite research group for letting me experience engineering first hand by working in their labs. Special thanks to Peter Hondred for his guidance and sharing his knowledge during the RET experience.