Welcome to The Engineering Ambassador Mentor Program! Your job as a member of TEAM is to guide visitors to the College of Engineering around the Engineering campus. Throughout their tour you will speak about each of the twelve majors within the College.

- Materials and Science Engineering
- Mechanical Engineering
- Industrial Engineering
- Aerospace Engineering
- Civil Engineering
- Construction Engineering
- Chemical/Biological Engineering
- Electrical Engineering
- Computer Engineering
- Software Engineering
- Agricultural Engineering
- Biological Systems Engineering

You may take this guide along with you on your tours. It outlines some highlights along the tour route and also gives some facts about each major. After you feel comfortable enough giving a tour without this guide, you can keep it as a reference to answer any questions a visitor may have.

What Do They Do?

Engineering is the practical application of science and mathematics to the real world. Engineers could be described as the inventors of the modern age. There is not a single item on the market today that has not involved some type of engineering. Engineering can range from careers in design and manufacturing to testing to sales and marketing. It is not uncommon for engineers to become well versed in the business world.

Percentage of incoming freshmen in the College of Engineering who begin as undeclared: 23%

- This means they are enrolled in the Engineering College but have not yet declared a specific major
- You have between 1–3 semesters to decide on a major within the college

Total Enrollment
- Undergraduate 5,030
- Graduate 996
REMEMBER before the tour

What to Wear
Engineering polo
Name tag
Nice pants/shorts/skirt (preferably khaki)—no jeans!
Casual walking shoes or sandals

Getting the Ball Rolling
Ask about the rest of their visit on campus, especially what else they have seen on campus or what they liked the most about their visit.

- Where are they from? They may be from around your hometown and can relate to you.
- What types of engineering are they interested in?
- What year are they currently in school?
- Have they visited many other colleges or universities?
- Are they involved in any extracurricular activities?

Make sure that you address all of the perspective students equally. Unless one visitor asks you a particular question, try to involve the group as much as possible.

Timeliness
Showing up a little early is never a bad idea. This gives you a chance to meet our visitors while they are waiting and get to know them before you begin.

Having a personal relationship with the visitors will help you out when you are giving the tour. This way you will not have to waste time on topics they may not be interested in and spend more time on topics they are.

Remember you are a reflection of the Iowa State University family: how you present yourself will show them the kind of atmosphere they can expect to find when they attend school here.
Acceptable Sample Topics

Why did you choose Iowa State?
How did you choose your major?
How did you learn to balance academics and stay socially active?
Time management
Study skills
Your favorite professors, classes, or labs on campus
Do you or did you work part time?
Past internship or co-op experience
Study abroad
Advice to the students that are touring that may still be in high school

Make Sure You Do Not:

Stand away from the visitors
Mention “super senior” or “fifth-year senior”
Use acronyms (ex. “UDCC” for “Union Drive Community Center”)
Answer any questions, especially the difficult ones, with a negative manner

Q. Are there any weed-out courses?
A: There are difficult courses, but the college does not try to “weed out.” Instead, you can utilize resources like instructor office hours, supplemental instruction, peer mentors, tutoring, etc.

Q. Do most students take more than four years to graduate?
A. Most students graduate after spending eight semesters on campus. That may differ in terms of years because students are encouraged to pursue co-op and internship experiences.

Try not to add irrelevant information. Notice when the group begins to lose interest and move on.
As a representative of Iowa State, always be kind and courteous to the visitors and their families. As the tour comes to an end, be the first to say thank you and ask the group if they have any further questions. It is okay to stay and answer questions that any of the visitors may have, but do not feel obligated to do so. Once the tour is done you are free to go. It is also polite to ask if anyone needs directions to their next destination. The campus may be small, but we all know there are no straight paths at Iowa State.

If the group specifically asks and is small enough, it is okay to show them one of the buildings that you did not enter, such as Black Engineering. Again, this is your choice, it is based on your time limitations. We appreciate it when students sacrifice their time for the University, but do not want a tour to interfere with studies.

Make sure to give each student a postage-paid comment card that they can return to evaluate the tour.

After everyone leaves and you return to the office, fill out a postcard for each one of the prospective students. Try to make the messages semi-personal. We want the students to feel like they are truly welcome here.
BUILDINGS on campus

1. Marston Hall
2. Sweeney Hall
3. Coover Hall
4. Davidson Hall
5. Town Engineering
6. Howe Hall
7. Hoover Hall
8. Black Engineering
1. Marston Hall
Marston Hall was completed in 1903 and was formerly known as Engineering Hall. In 1947 the building was renamed Marston Hall to honor Anson Marston, first dean of engineering, who served from 1904 to 1932.

Marston houses the following offices:
- Dean's Office: Jonathon Wickert
- Advising office for undeclared students
- International Programs Office
- Engineering Diversity Affairs – Leadership for Academic Diversity (LEAD) Program
- Engineering Enrollment Services & Pre-Collegiate Programs
- Engineering Career Services (ECS): with 20 state-of-the-art interview suites and the largest career fair in the nation (more than 300 companies), they provide help to get a co-op, internship, or full-time employment:
 - Online résumés
 - Résumé critiques
 - Mock interviews

2. Sweeney Hall
Sweeney Hall at one time contained both Chemical Engineering and Nuclear Engineering. However, as the nuclear era died down, the building became entirely Chemical Engineering. In 1964, the building was renamed Sweeney Hall in honor of Orland Russell Sweeney, holder or co-holder of almost 300 patents.

3. Coover Hall
Coover Hall, originally named the Electrical Engineering building, was built in 1950. In 1969 the building was renamed Coover Hall in honor of Mervin Sylvester Coover. Coover was associate dean of the College of Engineering from 1935 to 1954, and then acting dean from 1957 to 1959.

4. Davidson Hall
One of the older buildings on campus, Davidson Hall was severely damaged in a fire in 1941. A year later the building was rebuilt and officially dedicated as Davidson Hall after the former head of the agricultural engineering department, J. Brownlee Davidson. Davidson founded the first curriculum in Agricultural Engineering at Iowa State and served as head of the Agricultural Engineering department from 1907–1915 and 1919–1946.
5. Town Engineering

Built in 1971, Engineering Building No. 2 was renamed Town Engineering, in 1973 to honor George R. Town, who was part of the engineering faculty and dean of the college from 1949 to 1970.

6. Howe Hall

Howe Hall was completed in 1999 as phase one of ETRC. Howe is connected via a bridge to Hoover. It is dedicated in honor to its donors Helen and Stanley Howe. Mr. Howe was an engineering graduate in 1946.

7. Hoover Hall

Hoover Hall was completed in 2004, named after Gary BSME’61 and Donna Hoover, major contributors to the project. Hoover Hall is a part of ETRC (Engineering Teaching and Research Complex).

8. Black Engineering

The construction of Black Engineering was completed in 1986. The building is named for Henry M. Black, a 1929 graduate of Iowa State. Black served as a professor and head of The Department of Mechanical Engineering from 1946 to 1972.
Virtual Reality Applications Center

The Virtual Reality Applications Center (VRAC) is located directly adjacent to the C6 on the first floor of Howe Hall. While serving as operation central for the C6, the VRAC is also constantly trying to work its way through the barrier that is human and computer interaction. The majority of the haptic devices—devices activated by a sense of touch or a force—are designed and integrated in the VRAC. The VRAC is a multi-discipline interaction research center.

The C6 is a three-dimensional, fully-immersive synthetic environment. This unique facility consists of a 10ft x 10ft x 10ft room where all four walls, the floor and the ceiling are projection screens capable of displaying back-projected stereoscopic images, providing total immersion for the participants.

Originally opened in 2000, the C6 was the first six-sided synthetic immersive environment in the world, and the only known system of its kind to support wireless tracking.

With the recent upgrade, the C6 is the highest resolution immersive environment of its kind in the world.

Specs:
- 1,000 cubic feet of usable space
- Companies like John Deere or the U.S. Dept. of Defense will use the space to design large things like tractors or unmanned aerial vehicles
- Three-dimensional eight-channel surround sound system
- 48 dual-cpu workstations
- 24 Sony SRX-S105 digital cinema projectors
- 16.7 million pixels per wall (4096 x 4096)

Some of the equipment’s more innovative designs:
- Modular design: Each screen and its equipment move as a separate unit, allowing a screen to be moved, and access to the C6 possible.
- Shutter glasses: The computers render images for the right eye and left eye which are displayed in very rapid succession on the C6 viewing surfaces. Shutter glasses enable 3D viewing by ensuring that the user’s left eye and right eye see only the appropriate image.
- Collaboration: The C6 is connected to VRAC’s other immersive environments, including the four-wall C4 in Black Engineering Building and the auditorium in Howe Hall. The C6 is also connected to the vBNS backbone to support collaborative activities with national and international research laboratories.
About the Major

Chemical Engineering is the combination of an advanced knowledge of chemistry and basic biology to create new materials from raw materials. Chemical engineering also involves refining and processing applications such as the factories and refineries that create gasoline and motor oil. Chemical engineers can work in several fields, including:

- Business
- Manufacturing
- Biochemistry
- Medicine
- Patent Law
- Food Processing
- Industrial Management
- Pollution Monitoring

Biomedical Engineering

Iowa State University researchers are investigating:

- Micro/nano-patterned polymer surfaces to aid in nerve regeneration
- Developing replacement tissue for cartilage and breast reconstruction
- Designing pH and temperature sensitive polymers for modulated drug discovery and gene therapy
- Employing virtual reality technologies to discern protein structure and function

Fast Facts

- Artwork in Sweeney reveals the Ring of Elements, Flask of Knowledge, and Alchemist Pot of Gold
- Students can fulfill lab requirements in a five-week summer lab course in London or Oviedo, Spain
- Chemical engineering is tied with Industrial for the highest percentage of women, almost 50 percent
Enrollment
Undergraduate 402
Graduate 330

About the Major
Electrical engineering is the design, research, and use of all electrical power, including radio waves, cell phone signals, and electromagnetic fields. Electrical engineers make our whole world run. While other engineering disciplines make the devices that use power, electrical engineers make sure that the power is there. There are six main programs of study:
- Communications: the transmission of data (cell phones, radio waves)
- Controls: integrated control systems for robotics or flight control
- Electromagnetics, fields, & antennas
- Power Systems: distribution of power
- Microelectronics and Photonics: focus on the speed, materials, and flexibility of micro electronic devices
- Very Large Scale Integration (VLSI) analog: design of integrated circuits in high-speed communications

Fast Facts
- Active Learning Complex
 - Provides facilities to develop team working skills. Includes such things as electronic white boards which allow you to save information to hard drive, large TV for computer monitor, wireless keyboard. Center cubicles house department graduate student offices
- 1939: The world’s first computer built by ISU professor John Atanasoff and electrical engineering graduate student Cliff Berry
- A $16.5 million renovation was recently completed on part of Coover Hall. The second phase of renovations could begin in 2010. The total project will cost an estimated $38.8 million

Labs
- Energy Systems Lab: convert energy using generators, motors, control systems, and power electronic circuits
- Circuit Design Lab: design and lay out analog and digital circuits
- Microelectronic Fabrication Lab: build a circuit on a bare silicon wafer
- Wireless and Digital Signal Processing Lab

Companies
- Stryker
- Boeing
- Cargill
- Texas Instrument
- Micron
- Xcel Energy
- Energizer
- Alliant Energy
COMPUTER Engineering

Coover Hall

Enrollment
Undergraduate 424
Graduate 330

About the Major
Computer engineering focuses on all aspects of a computer. A computer engineer’s job is to make computers faster, smaller, and cheaper. Currently there are three main programs of study within computer engineering:

- **Computer Architecture**: speed, dependability and versatility of physical components of a computer. Often leads to careers in computer systems management.

- **Networking and Security**: computer intrusion detection, counter intrusion, and safeguarding networks.

- **Very Large Scale Integration (VLSI)**: along with electrical engineering, this field deals with memory and high-speed communications.

Labs
- Microcontrollers Lab: learn how to program hardware
- Operating Systems Lab
- Computer Architecture Lab: design a processor
- Information Assurance Center: explore the problems of securing information in areas ranging from software to networks to electronic democracy

Companies
- IBM
- Microsoft
- CIA
- Honeywell
- John Deere
- Guidant
- Mayo Clinic
- Medtronic
- Micron
- Rockwell Collins
- Sprint
- Lockheed Martin

Fast Facts
- **ISEAGE**: research funded by the National Security Agency (NSA), consisting of three groups:
 - One simulates the internet on a much smaller scale
 - One simulates “hackers” and other attacks through the internet
 - The last group works on how to prevent these attacks and future problems
Enrollment
Undergraduate 56

About the Major
Software engineering is one of the newest majors in the College of Engineering (added fall 2007). In the past, if a student wished to go the software route in their studies, he or she would have needed to major in computer engineering and minor in computer science. With demand for software engineers increasing, Iowa State added this major.

A software engineer designs, develops, and evaluates software for companies that install and configure computer systems.

So what’s the difference?
Computer science involves the principles: theory, architecture, and application.

Computer engineering involves putting the principles into practice: problem solving, design, and analysis.

Software engineering involves the process: lifecycle of development.

Labs
Microcontrollers Lab: learn how to program hardware
Operating Systems Lab
Computer Architecture Lab: design a processor
Information Assurance Center: explore the problems of securing information in areas ranging from software to networks to electronic democracy

Companies
IBM
Microsoft
CIA
Honeywell
John Deere
Guidant
Mayo Clinic
Medtronic
Micron
Rockwell Collins
Sprint
Lockheed Martin

Fast Facts
• Rated by Money Magazine as one of the top 10 jobs
• Combination between Computer Science and Computer Engineering but not Electrical Engineering
• Classes began fall of 2008
• One of 12 accredited Software Engineering programs in the nation
AGRICULTURAL engineering

Davidson Hall

Enrollment
Undergraduate 188
Graduate 67

About the Major
As an agricultural engineer, you apply your knowledge of the biological, physical, and engineering and technical sciences to solve problems for the world’s largest industry - agriculture and the food system. Here’s just the beginning of the things you could do:

• Design and test equipment for more efficient farming
• Develop methods to improve and protect water and soil quality
• Implement innovative ideas to improve the quality and safety of food
• Create systems that create and utilize biorenewables and biofuels
• Manage complex agricultural systems

Labs
John Deere Engines Lab
Porous Media Lab
National Soil Tilth Lab
Air Dispersion Lab
Hydraulics Lab
Mechatronics Lab
Geographic Information Systems Lab
Seed Science Center

Companies
Caterpillar Inc.
CIMA labs Inc.
Hormel Foods Corporation
Iowa Department of Natural Resources
John Deere
Kraft Foods
Carleton Life Support Systems

Recent Research Areas
Advanced Machinery Engineering
Biorenewable Fuels
Animal Production
Environmental Stewardship
Process Engineering
Safety

Fast Facts
• ASABE: American Society of Agricultural and Biological Engineers
• Quarter-scale tractor team
• First Professional Agricultural Engineering Curriculum in 1905
• Three new buildings to be erected next to Howe that will serve as the new Agricultural Center
BIOLOGICAL SYSTEMS engineering

Davidson Hall

New Major!

About the Major

Biological systems engineers have high-impact careers. High-quality air, a secure food supply, and clean water is important to everyone. In today’s global marketplace, grains, produce, and livestock are transported from country to country, and food security is increasingly of concern. Biological systems engineers help safeguard our air, water, and food supply by developing sensors to detect problem compounds and by developing management plans to track materials and to minimize the chances of contamination.

Program of Study

Bioenvironmental Engineering
Biorenewable Resources
Food Engineering
Pre-Professional
About the Major

Construction engineering majors can choose among four emphases:

- Building Construction: build public and private facilities, supervise large construction projects or design a project’s heating and air-conditioning systems
- Heavy/Highway Construction: develop and build highways, bridges, airports, railroads, dams, and reservoirs
- Building Construction: construct public buildings, such as malls, hospitals, powerplants, and commercial buildings
- Mechanical and Electrical Construction: plan and install heating, ventilation, air-conditioning, plumbing, and electrical systems

Labs

Surveying
Computer Automated Drawing
Structural
Hydraulics
Cement Concrete Design

Companies

J.E. Dunn
Weitz Companies
Granite
Kiewit
Petersen Contractors
Jensen Construction
M.A. Mortensen

Recent Technologies

Project to Rewrite Supervisory Training Program Unit 8: Managing the Project – The Supervisor’s Role

Senior Design Project Bid won a project for a University of Iowa building, and the real companies contacted the group to find out what they did

Fast Facts

- AGC: Associated General Contractors
- DBIA: Design Build Institute of America
- Sigma Lambda Chi: Honor Society
About the Major
Civil engineers plan public and private facilities; help reduce water or air pollution; and improve the concrete mixtures used in pavements, buildings, and dams.

As a civil engineering major, you could choose one of the following emphases:

- Transportation: highway design work with safety and congestion in major streets, intersection design
- Structures: bridges, buildings, any type of structure
- Environmental: pollution control, waste and water treatment
- Geotechnical: working with soils, retaining walls, foundations, footings
- Storm water management: storm sewer design, flood control

Labs
- Structural Analysis Lab
- Chemical Analysis Lab
- Environmental Lab
- Soils and Aggregates Lab
- Concrete Mixing & Asphalt Lab
- Non-Destructive Evaluation Laboratory

Companies
- Burns & McDonnell
- Iowa DOT
- Chicago Bridge & Iron
- Fox & Associates
- HDR
- Kimley Horn
- CH2MHillCool Technologies

Recent Technologies
Effects of overweight loads on roads and bridges
Determination and Evaluation of Alternate Methods for Managing and Controlling Highway-Related Dust, Phase II

Fast Facts
- ASCE: American Society of Civil Engineering
- TSA: Transportation Student Association
- Chi Epsilon: Honor Society
About the Major

Aerospace Engineering deals with anything that moves through a medium. The medium can range from a gas, liquid, or solid. In particular the displacement of the medium. Like Mechanical Engineering, Aerospace Engineering is heavy in design and design analysis. The typical Aerospace Engineer could be seen working on projects involving aircraft or spacecraft design, boats or submarines, sporting equipment like skis and golf balls, wind engineering, as well as acoustics and noise control. The four major areas include:

• Propulsion
• Aerodynamics
• Structures
• Control Systems

Labs

Acoustics Lab: 20-foot-deep water tank used for sonar testing technologies—applied to submarine and buoy design

Wind Tunnels

• Blue Wind Tunnel (1’x1’, 150 mph)
• Bill James Wind Tunnel (3’x2.5’, 180 mph), used for airfoil and building testing and by NASA for educational TV series
• Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel (8’x6’, 105 mph)
• High Speed Wind Tunnel (>600 mph and up to ~ Mach 3), used to study shock waves and expansion fans

Composites Lab

Tornado/Microburst Simulator: Largest of its kind to be used for research purposes—unique because it has x- and y-axis movement capabilities

Companies

NASA
CIA
Boeing
Rockwell Collins
Honeywell
Rolls-Royce
Lockheed Martin
Northrop Grumman
ATK
L3

Fast Facts

• Wind Engineering and Experimental Aerodynamics
• SSOL: Spacecraft Systems and Operations Laboratory
• Sigma Gamma Tau: National Honors Society in Aerospace Engineering
• AIAA: American Institute of Aeronautics and Astronautics
Materials Engineering is the application of math and science to create new materials and improve the quality of existing materials. A materials engineer knows the relationships between the physical and chemical properties of a material and the internal structure of a material. There are four major areas of study:

- Polymers
- Ceramics
- Metals
- Electronics

A Material Engineer will choose two of these areas to specialize in. The application of these areas can range anywhere from aeronautics and automobiles to fiber-optics and sports equipment like snowboards, skis, and golf balls.

Fast Facts

- Second-smallest engineering discipline in the college
- Has the largest budget ($15 million)
- This means lots of research opportunities for undergraduate students
- Materials Advantage: Student-run group that raises money to take trips promoting materials engineering and shows students what materials engineers do

Labs

- Non-Destructive Evaluation
- Thermal Analysis
- Scanning Electron Microscope

Companies

- Texas Instruments
- Caterpillar
- Seagate
- Motorola
- Maytag

Recent Technologies

Developed magnetic refrigeration to eliminate Freon
- Patented by freshmen and sophomore undergraduates.

ISU’s Materials Engineering department discovered the second-hardest material, aluminum magnesium boride

Ceramic bones fortified with calcium created to replace metal screws and plates
About the Major

Industrial Engineering is the integration of engineering and business in order to make decisions that will improve the overall engineering process. Industrial Engineers improve the conditions of life, whether through the workplace or through better service. As an Industrial Engineer you may choose between five areas:

- Manufacturing Systems
- Operations Research
- Engineering Management
- Human Factors
- Enterprise Computing

Labs

- Enterprise Computing Lab
- Welding and Metal casting Labs
- Metrology
- Applied Ergonomics
- Rapid Prototyping
- Product Realization
- Machining
- Materials Testing
- Polymer Processing

Companies

- Alcoa
- Boeing company
- Caterpillar Inc.
- General Mills
- John Deere
- Recent Technologies
- Distributed forensic training in virtual immersive environments
- Engineering Instrumentation
- Food Manufacturing Industry of Iowa: Focus on Packaging

Fast Facts

- IIE: Institute of Industrial Engineers
- Alpha Pi Mu: Industrial Engineers Honor Society
- ASQC: American Society of Quality Control
- INFORMS: Institute for Operations Research & Management Science
About the Major

Mechanical Engineering is the largest and broadest engineering discipline in the college. The three main divisions are:

- Energy cultivation
 - The generation, distribution, and use of energy
 - Find more productive and less expensive means of energy conversion
- Manufacturing
 - Processing of raw materials into finished products
 - Control and automation of the manufacturing process
- Engineering design and analysis
 - Model complex systems
 - Force and stress calculations
 - Heavy use of Computer Aided Design (CAD)

Labs

- Product Realization Lab (Fabrication Lab)
- Measurements and Instrumentation Lab
- Metal Casting
- Engines
- Engle Lab
- Controls Lab
- C4 Virtual reality Design Lab

Companies

- General Motors
- John Deere
- Hewlett Packard
- Boeing
- Motorola

Recent Research Areas

- Virtual Reality Application
- Synthetic Environments
- Biorenewable fuels
- Micro/Nano-technology
- Internal Combustion Engines
- Robotics
- Mechatronics
- Radioactive waste

Fast Facts

- ISU was only the seventh school to receive the C4 virtual reality lab
- Society of Automotive Engineers (SAE): Mini Baja car and Formula One car
- Team PrISUm: Solar Car
- ASME: American Society of Mechanical Engineers
- Pi Tau Sigma: Mechanical Engineering Honor Society
Like most universities, Iowa State has a wide array of majors to choose from. It also has a huge assortment of extracurricular activities and Student-run Organizations. There is a club for everything on campus, and if there's not a club for you, it is easy to create one. All that is needed to start a club is 10 students and a faculty advisor. Four of the largest groups on campus are located on Engineering Row in Old Sweeney Hall and Nuclear Engineering.

Society of Automotive Engineers (SAE)
SAE holds claim to Nuclear Engineering and two high-powered design teams. Both The Mini Baja and Formula Race Car teams have garages there.

Mini Baja
Mini Baja is an intercollegiate competition that takes place about every two years. The goal of the competition is to simulate real life challenges that could arise in industry, and these challenges far surpass just engineering topics. As a student run organization, Mini Baja deals with its own money, legalities, and fabrication. All teams are required to use the same size motor, but must build their own body and suspension system, as well as drive train and steering units. The majority of the components used in the design process are made on campus.

Formula One
The Formula One team, like the Mini Baja team, competes internationally with up to 140 different schools and Universities at the Formula SAE event in Romeo, Michigan. The team must design, build, test, and ultimately race their vehicle. Yet, the team must also put forth a sound marketing plan, and they also must show where all money and donations are coming from.

Team PrISUm Solar Car
Like SAE, this is a student-run organization, so all money and design is done by students and for students.

Their current project is PrISUm Fusion, which will race this coming spring and summer.

The car is almost completely sponsored by companies (Boeing, Northwest Airlines, Remmele Engineering, BP Amoco, etc.).

Each car holds only one driver at a time and the drivers are chosen by characteristics such as height, endurance, follows directions well, is a team player, etc.

It gets hot in the car reaching temperatures of 110–120°F, so drivers have to wear an ice vest and are rotated on shifts.

The car:
- Must be licensed as a vehicle
- Must follow road rules
- Can reach up to 71–75 mph
- Can drive on the highways with regular traffic
Organizations, cont.

Gaffer’s Guild

The Gaffer’s Guild is a club open to all students and has relatively nothing to do with engineering. This is Iowa State’s very own glass-blowing club. It is one of the most popular clubs on campus, making it one of the hardest to get into. A training course must be taken before becoming a full member, and there is a 250-person waiting list at any given time. The furnaces in the Gaffer’s Guild Studio burn at around 1200°C. The studio is maintained by the students, and all materials and equipment are bought through membership.

Other Clubs and Activities on Campus

There are more than 700 organizations and clubs to get involved with on campus, more than 40 just within the College of Engineering!

- Engineering clubs (ex. TEAM, SWE, American Society of Civil Engineers, etc.)
- Sports clubs (ex. soccer, volleyball, Tae Kwon Do, Scuba Club, skydiving, skiing, lacrosse, ballroom dancing)
- Religious clubs (ex. The Salt Company, Campus Crusade)
- Fraternities and sororities
- Drams and music clubs and organizations (ex. Oratorio choir, Varieties)
- Political clubs (ex. College of Young Republicans)
- Miscellaneous clubs (Ex. Yo-Yo Club, motorcycle, Chemistry Club, etc.)
- Intramurals (ex. Broomball, Ultimate Frisbee, basketball, soccer, disc golf, and more!)

If you have an interest, there is likely a club for it, or you can create your own!