Climate Change Impacts of Renewable Energy Policies: The Roles of Capacity Constraints and Market Structure

Min Wang Jinhua Zhao

Michigan State University

May 2011
Motivation

- Impacts of biofuel on oil supply: mostly ignored
- Reason: small market share of biofuel in gas market
- Our story: in a dynamic model, renewable energies could have major impacts on the current supply of oil
 1. Conditions: capacity constraints, market power in oil
 2. mechanism: intertemporal allocation of a nonrenewable resource
- Relevance: LCA of biofuels, effects of renewable energy policies, “Green Paradox”
- Plan of the talk
 1. show intuition in simple model
 2. Numerically solve a more complicated model using market data
Next level of LCA: dynamic approach

Basic messages

- Fossil fuel supply is *more responsive* viewed from a dynamic perspective
Next level of LCA: dynamic approach

Basic messages

- Fossil fuel supply is *more responsive* viewed from a dynamic perspective
 - Nonrenewable resource: decision over *when* to extract *how much*
Next level of LCA: dynamic approach

Basic messages

- Fossil fuel supply is *more responsive* viewed from a dynamic perspective
 1. *Nonrenewable* resource: decision over *when* to extract *how much*
 2. A unit not extracted today will be extracted tomorrow
Next level of LCA: dynamic approach

Basic messages

- Fossil fuel supply is *more responsive* viewed from a dynamic perspective
 1. *Nonrenewable* resource: decision over *when* to extract *how much*
 2. A unit not extracted today will be extracted tomorrow
 3. Current extraction responses to *current and future* biofuel supply
Next level of LCA: dynamic approach

Basic messages

- Fossil fuel supply is more responsive viewed from a dynamic perspective
 1. Nonrenewable resource: decision over when to extract how much
 2. A unit not extracted today will be extracted tomorrow
 3. Current extraction responses to current and future biofuel supply
 4. Much more elastic than in a static model
Next level of LCA: dynamic approach

Basic messages

- Fossil fuel supply is *more responsive* viewed from a dynamic perspective
 1. Nonrenewable resource: decision over *when* to extract *how much*
 2. A unit not extracted today will be extracted tomorrow
 3. Current extraction responses to *current and future* biofuel supply
 4. Much more elastic than in a static model

- Biofuel (and the majority of renewable energy) is not a backstop
Next level of LCA: dynamic approach

Basic messages

- Fossil fuel supply is *more responsive* viewed from a dynamic perspective
 1. *Nonrenewable* resource: decision over *when* to extract *how much*
 2. A unit not extracted today will be extracted tomorrow
 3. Current extraction responses to *current and future* biofuel supply
 4. Much more elastic than in a static model

- Biofuel (and the majority of renewable energy) is not a backstop
 1. Capacity constraints

- Fossil fuel supply is *more responsive* viewed from a dynamic perspective
 1. *Nonrenewable* resource: decision over *when* to extract *how much*
 2. A unit not extracted today will be extracted tomorrow
 3. Current extraction responses to *current and future* biofuel supply
 4. Much more elastic than in a static model

- Biofuel (and the majority of renewable energy) is not a backstop
 1. Capacity constraints
Next level of LCA: dynamic approach

Basic messages

- Fossil fuel supply is *more responsive* viewed from a dynamic perspective
 1. *Nonrenewable* resource: decision over *when* to extract *how much*
 2. A unit not extracted today will be extracted tomorrow
 3. Current extraction responses to *current and future* biofuel supply
 4. Much more elastic than in a static model

- Biofuel (and the majority of renewable energy) is not a backstop
 1. Capacity constraints
 2. Fossil fuel will coexist with renewable energy for foreseeable future
Next level of LCA: dynamic approach

Basic messages

- Fossil fuel supply is *more responsive* viewed from a dynamic perspective
 1. *Nonrenewable* resource: decision over *when* to extract *how much*
 2. A unit not extracted today will be extracted tomorrow
 3. Current extraction responses to *current and future* biofuel supply
 4. Much more elastic than in a static model

- Biofuel (and the majority of renewable energy) is not a backstop
 1. Capacity constraints
 2. Fossil fuel will coexist with renewable energy for foreseeable future
 3. Competitive fringe, but in a dynamic fashion
Next level of LCA: dynamic approach

Basic messages

- Fossil fuel supply is *more responsive* viewed from a dynamic perspective
 1. Nonrenewable resource: decision over *when* to extract *how much*
 2. A unit not extracted today will be extracted tomorrow
 3. Current extraction responses to *current and future* biofuel supply
 4. Much more elastic than in a static model

- Biofuel (and the majority of renewable energy) is not a backstop
 1. Capacity constraints
 2. Fossil fuel will coexist with renewable energy for foreseeable future
 3. Competitive fringe, but in a dynamic fashion

- Market power in oil sector
Premises of our approach (cont’d)

- Global climate change is about the *time path* of carbon emissions rather than *levels*
Premises of our approach (cont’d)

- Global climate change is about the *time path* of carbon emissions rather than *levels*
 - Extreme view: all or most carbon stored in fossil fuel will eventually be released
Premises of our approach (cont’d)

- Global climate change is about the time path of carbon emissions rather than levels
 1. Extreme view: all or most carbon stored in fossil fuel will eventually be released
 2. GHG problem: carbon has been released too fast, far exceeding rates of dissipation
Premises of our approach (cont’d)

- Global climate change is about the *time path* of carbon emissions rather than *levels*
 1. Extreme view: all or most carbon stored in fossil fuel will eventually be released
 2. GHG problem: carbon has been released *too fast*, far exceeding rates of dissipation
 3. GHG is a stock pollutant. Earlier emissions cause more NPV damage.
Global climate change is about the \textit{time path} of carbon emissions rather than \textit{levels}

1. Extreme view: all or most carbon stored in fossil fuel will eventually be released
2. GHG problem: carbon has been released \textit{too fast}, far exceeding rates of dissipation
3. GHG is a stock pollutant. Earlier emissions cause more NPV damage.
4. Optimal path: lower emission \textit{now}, implying higher emission in the future
Impacts on the *path of GHG emissions* from renewable energies

- Low cost biofuel, high cost biofuel and solar
What we do

Impacts on the *path of GHG emissions* from renewable energies

- Low cost biofuel, high cost biofuel and solar
- biofuel: capacity constraints.
What we do

Impacts on the *path of GHG emissions* from renewable energies

- Low cost biofuel, high cost biofuel and solar
- biofuel: capacity constraints.
- solar: backstop
What we do

Impacts on the *path of GHG emissions* from renewable energies

- Low cost biofuel, high cost biofuel and solar
- biofuel: capacity constraints.
- solar: backstop
- Consider two kinds of market structure in oil: perfect competition and monopoly.
Impacts on the *path of GHG emissions* from renewable energies

- Low cost biofuel, high cost biofuel and solar
- biofuel: capacity constraints.
- solar: backstop
- Consider two kinds of market structure in oil: perfect competition and monopoly.
- linear production costs: constant MC of production/extraction
Behavior of an oil cartel

- Objective: raise price by reducing extraction/supply

But one barrel not extracted today will raise supply tomorrow: competing with its future self.

Crucial: elasticity of demand

1. Higher elasticity, harder to raise price: have to cut production by more

2. If different elasticities in different time periods, want to raise price in periods with lower elasticities

In a basic Hotelling model

\[
\dot{p} = r - \dot{\gamma}
\]

\[
\gamma = 1 - \frac{1}{|\epsilon_D|}
\]

Empirical evidence: OPEC behaves like a cartel (with mistakes)
Behavior of an oil cartel

- Objective: raise price by reducing extraction/supply
- But one barrel not extracted today will raise supply tomorrow: competing with its future self

\[\dot{p} = r - \dot{\gamma}, \quad \gamma = 1 - \frac{1}{|\epsilon_D|} \]

Empirical evidence: OPEC behaves like a cartel (with mistakes)
Behavior of an oil cartel

- Objective: raise price by reducing extraction/supply
- But one barrel not extracted today will raise supply tomorrow: competing with its future self
- Crucial: elasticity of demand
Behavior of an oil cartel

- Objective: raise price by reducing extraction/supply
- But one barrel not extracted today will raise supply tomorrow: competing with its future self
- Crucial: *elasticity of demand*

 1. Higher elasticity, harder to raise price: have to cut production by more

\[\dot{p} = r - \dot{\gamma} \gamma, \gamma = 1 - \frac{1}{|\epsilon_D|} \]

Empirical evidence: OPEC behaves like a cartel (with mistakes)
Behavior of an oil cartel

- Objective: raise price by reducing extraction/supply
- But one barrel not extracted today will raise supply tomorrow: competing with its future self
- Crucial: *elasticity of demand*
 1. Higher elasticity, harder to raise price: have to cut production by more
 2. If different elasticities in different time periods, want to raise price in periods with lower elasticities

In a basic Hotelling model

\[\dot{p} = r - \dot{\gamma}, \quad \gamma = 1 - \frac{1}{|\epsilon_D|} \]

Empirical evidence: OPEC behaves like a cartel (with mistakes)
Behavior of an oil cartel

- Objective: raise price by reducing extraction/supply
- But one barrel not extracted today will raise supply tomorrow: competing with its future self
- Crucial: elasticity of demand
 1. Higher elasticity, harder to raise price: have to cut production by more
 2. If different elasticities in different time periods, want to raise price in periods with lower elasticities

In a basic Hotelling model

\[\frac{\dot{p}}{p} = r - \frac{\dot{\gamma}}{\gamma}, \quad \gamma = 1 - \frac{1}{|\epsilon_D|} \]
Behavior of an oil cartel

- Objective: raise price by reducing extraction/supply
- But one barrel not extracted today will raise supply tomorrow: competing with its future self
- Crucial: elasticity of demand
 1. Higher elasticity, harder to raise price: have to cut production by more
 2. If different elasticities in different time periods, want to raise price in periods with lower elasticities

In a basic Hotelling model

\[
\frac{\dot{p}}{p} = r - \frac{\dot{\gamma}}{\gamma}, \quad \gamma = 1 - \frac{1}{|\epsilon_D|}
\]

- Empirical evidence: OPEC behaves like a cartel (with mistakes)
Static effects of biofuel

- Biofuel is a competitive fringe
 Increasing the elasticity of demand
Static model: small effect
Solar

- backstop: infinite elasticity
Price path under perfect competition

Price path with backstop

\[P_c(t) = C_c + \lambda_c e^\gamma \]
Price path under monopoly

Marginal revenue

Price path
Example: impacts of solar cost reduction

Price path with backstop