Land Scarcity and Life Cycle Emissions in Biofuel Production and Use

Project Update
Dermot Hayes and Nathan Kauffman

Iowa State University
Economics Department

April 20, 2012
Research Summary

Focus: Explore implications of multiple feedstock biofuel production from a given acre of land (e.g., corn grain + corn stover)

- “A life cycle assessment of advanced biofuel production from a hectare of corn” (Kauffman, Hayes, and Brown)
 - Published in *Fuel* (2011)

- “The Feasibility of Carbon-Negative Biofuels from Biochar-Amended Corn Fields” (Kauffman, Hayes, Brown, Laird, and Dumortier)
 - Under review at *Nature Climate Change* (1st submission)
 - Presubmission enquiry invited a full review

- “The Tradeoff Between Bioenergy and Emissions with Land Constraints” (Kauffman and Hayes)
 - Under review at *Energy Policy* (2nd submission)
“A life cycle assessment of advanced biofuel production from a hectare of corn”

Outline

- Corn grain \rightarrow ethanol (EPA)
- Corn stover \rightarrow bio-oil, biochar via fast pyrolysis
 - Bio-oil upgraded to drop-in fuel
 - Displaces gasoline/diesel
 - Biochar applied to soil
 - Carbon sequestered
 - Fertilizer reduction
 - Possible yield improvements
Conclusions

- GHG Emissions are measured per acre
- Corn grain (ethanol) plus corn stover (bio-oil/biochar)
- Generates a 52% reduction in emissions relative to gasoline
- Sufficient to qualify as an advanced biofuel if “corn” restriction removed from EISA
"The Feasibility of Carbon-Negative Biofuels from Biochar-Amended Corn Fields"

Pathway Summary

YEAR ONE
Corn (1 ha)
Net Emissions:
–2.05 tCO₂e/ha
Feedstock Removal (Sequestration Loss)
0.13 tCO₂e/ha
Nutrient Replacement
0.08 tCO₂e/ha
Corn Stover Collection
0.08 tCO₂e/ha
Transportation
0.01 tCO₂e/ha
Pyrolysis Operations
No net emissions
Biochar + NCGs supply energy requirements
Biochar Application
0.06 tCO₂e/ha
Fertilizer Displacement
-0.05 tCO₂e/ha
Carbon Sequestration
-0.59 tCO₂e/ha

HIGHER YIELD
YEAR TWO
Corn (1 ha)
Net Emissions:
–2.05 tCO₂e/ha
ILUC emissions credit from increased yield
Bio-gasoline Distribution
0.01 tCO₂e/ha
Bio-oil Upgrading
0.29 tCO₂e/ha
Transportation
0.27 tCO₂e/ha
Gasoline Displacement
-2.41 tCO₂e/ha
Bio-gasoline
Refinery
Bio-char
“The Feasibility of Carbon-Negative Biofuels from Biochar-Amended Corn Fields”

Results

![Graph showing net emissions (g/MJ) over time horizon from 2010 to 2040. The graph compares net emissions with and without yield effect, and with carbon neutral scenarios.](image-url)

Sensitivity Analysis

- **Stover Removal Rate (40%, 70%)**
- **Biochar Yield (17%)**
- **Biochar-Induced Yield Growth (6%)**
- **Biochar Used for Combustion (33%)**
- **Bio-Oil to Bio-Gasoline Conversion (42%)**
- **Bio-Oil Yield (61.7%)**
- **Bio-Oil Required for Hydrogen Production (38%)**
- **Bio-Oil Hauling Distance (400km)**

Net emissions gCO₂e/MJ

Hayes & Kauffman (ISU) Scarcity and Life Cycle Emissions April 20, 2012 8 / 15
Motivation

- Land scarcity implies a trade-off between bioenergy production and emissions reduction.
- Conventional life cycle assessments (EPA) do not capture this trade-off.

Summary of Analysis

- Comparison of switchgrass and corn (1 acre)
- Minimize emissions and maximize biofuel production on 1 acre
- Land constraint
2006 - 2010 Average Non-Irrigated Corn Yields
Estimated Switchgrass Yields (Khanna et al., 2011: 75%)
Policy Scenario 1: No External Value to Biofuel Production
“The Tradeoff Between Bioenergy and Emissions with Land Constraints”

\[S = 0.45, \ P = 5 \]

Policy Scenario 2: External Value = $0.45, Carbon = $5/Mt
Policy Scenario 3: External Value = $0.45, Carbon = $30/Mt
Thank you!
Questions or Comments?
Optimal Regional Cropland Allocation and Crop Rotation Strategies for U.S. Biomass Supply

Project Proposal
Dermot Hayes and Nathan Kauffman

Iowa State University
Economics Department

April 20, 2012
Policy Scenario 3: External Value = $0.45, Carbon = $30/Mt
Determined optimal cropland allocation of corn vs. switchgrass.
- Static (1 year) framework
- From perspective of society
- Emissions per acre

Also considered possible yield effects of biochar in a thermochemical pathway.
Motivation for Proposed Work

- Realities not yet considered
 - Switchgrass is a perennial (time to establish).
 - Farmers decisions may not coincide with society’s goals.

- Proposal summary
 - Farmer’s perspective
 - Profit-maximizing
 - Forward-looking
 - Solve for policy (or policies) that would cause farmer = society.
 - Model as a real option switching problem
 - Competitive markets
 - General equilibrium (Commodity prices endogenous)
 - Rotations to consider
 - Corn/Soybeans vs. Switchgrass
 - Continuous Corn (with pyrolysis and possibly cover crop) vs. CS or CCS.
Change in Corn Acreage by 2050

Probability of regime switching by 2050

- 0.01% - 10%
- 11% - 20%
- 21% - 30%
- 31% - 40%
- 41% - 50%
- 51% - 60%
- 61% - 70%
- 71% - 80%
- 81% - 90%
- 91% - 100%

Hayes & Kauffman (ISU) Cropland Allocation and Rotations April 20, 2012 6 / 8
Work Plan

1. Collect data on regional production and input costs
 - Crop choice: corn, soybeans, switchgrass, (Miscanthus?)
 - Rotation strategies

2. Develop, calibrate, and refine model

3. Conduct analysis, write up results, submit for publication
Thank you!
Questions or Comments?