Physical Systems Modeling and Simulation of Agricultural and Off-Road Machinery Systems

Dr. Tekeste's Lab

Development of Experimental Tests for DEM Calibration

Researchers: Mohammad Mousaviraad (PhD), Dr. Shun Zhang

Compression Restitution

material tests fit for application

Circular Soil Bin

Angle of Repose Direct Shear Test Triaxial Test Grain Auger

Calibration of micro-mechanics contact models requires physics-based bulk

surrogate fitting for DEM parameters & multi-response optimization

algorithms (Mousaviraad et al., 2017; Tekeste et al., 2018)

Soil-Machine Dynamics Laboratory

Laboratory: Jacob Mason, Lucas Roe, Cole Schlup

Perform controlled wear tests of soil-engaging tools

■ Face hardening (CADEN) design evaluation for wear

Methodology

Test Development Our DEM methodology involves design of experiment (DOE), stochastic

Develop testing methodology for highfidelity calibration of soil & biomass materials

Integrate into simulation-based design

Technology development for off-road & agricultural machinery equipment

Our methodology development is based on systematic design of experiment (DOE), laboratory testing & evaluation of industrial applications

(soil-machine systems)

Data for model validation

Tire/track forces

Soil cutting forces

Soil-to-machine interaction (tire, blade)

Soil stress for performance testing

Testing

Multi-Physics Simulation of **Agricultural** Machinery

Mobility Soil Bin

Data Analytics

for Precision Tillage **Soil Compaction**

Measurement & prediction of soil compaction & its relationship to yield

> Prescription tillage mapping using multisensory soil

Soil Tilth Map

DEM-Multibody Dynamics (MBD) Coupling for Soil-Tool Interaction

Researcher: Sadaf Ghorbani (MSc)

to LMS (Ghorbani et al., 2018)

Soil Cutting Experiment

DEM-MBD Coupling Module

Coupling of DEM & MBD is essential to simulate the soil-to-tool interaction

to obtain accurate loads for complex materials & different machine motions

In coupling simulation, velocity & position of the machine parts are

calculated in MBD software (LMS) then transferred to DEM (EDEM)

in which reaction forces from soil particles are updated & sent back

Machine Traffic Induced Soil Compaction

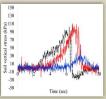
& Its Impact on Long Term Yield

Researcher: Dr. Elnaz Ebrahimi

Soil Cutting Simulation

Multi-Physics

Modeling


Physical systems modeling of material- to-machine interactions

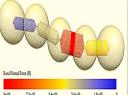
Finite element method (FEM)

Computational Fluid Dynamics (CFD)

Discrete Element Method (DEM)

Multi-Body Dynamics (MBD)

Heavy Equipment Traffic Soil Stress from Traffic Pass


- ■Eco-physiological response of soybean & corn to compacted soil in root zone
- ■Deep tillage management to alleviate deep soil compaction from construction activities (Tekeste et al., 2019)

Modeling Flexible Fibers Using DEM

Cultivator Sweep

Researcher: Mathew Schramm (PhD)

- •DEM can create bonds between specific spheres, representing flexible fibers
- Experiment measurements of wheat straw fiber material performed to obtain property values such as diameters, weights, lengths, and mechanical responses (Schramm et al., 2018)

DEM Simulation for Worn Tool Analysis

Researcher: Dr. Mehari Tekeste

Experimental testing & 3D scanned sweeps DEM simulation

- ■Apply 3D scanning & reverse engineering to integrate worn tools into simulation work flow
- ■DEM simulation of soil-to-tool interaction to virtually analyze the performance of tillage tools from field service (worn vs. new) (Tekeste et al., 2018)